Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

WISDOM Dataset

Estimated reading: 3 minutes

Visualization of the WISDOM dataset in the Deep Lake UI

WISDOM dataset

What is WISDOM Dataset?

The WISDOM (Warehouse Instance Segmentation Dataset for Object Manipulation) dataset is a synthetic training dataset of 50,000 depth images and 320,000 object masks using simulated heaps of 3D CAD models.

Download WISDOM Dataset in Python

Instead of downloading the WISDOM dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load WISDOM Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/wisdom-real-highres-train")
				
			

Load WISDOM Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/wisdom-real-highres-test")
				
			

WISDOM Dataset Structure

WISDOM Data Fields
  • image: tensor containing the image.
  • masks: tensor to represent image masks.
WISDOM Data Splits
  • The Wisdom dataset training set is composed of 100 images.
  • The Wisdom dataset testing set is composed of 300 images.

How to use WISDOM Dataset with PyTorch and TensorFlow in Python

Train a model on WISDOM dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on WISDOM dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about WISDOM Dataset

WISDOM Dataset Description

  • Homepage: https://sites.google.com/view/wisdom-dataset/dataset_links?authuser=0
  • Paper: Introduced by Danielczuk et al. in Segmenting Unknown 3D Objects from Real Depth Images using Mask R-CNN Trained on Synthetic Data
  • Point of Contact: N/A
WISDOM Dataset Curators

Michael Danielczuk, Matthew Matl, Saurabh Gupta, Andrew Li, Andrew Lee, Jeffrey Mahler, Ken Goldberg

WISDOM Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

WISDOM Dataset Citation Information
				
					@article{DBLP:journals/corr/abs-1809-05825,
  author    = {Michael Danielczuk and
               Matthew Matl and
               Saurabh Gupta and
               Andrew Li and
               Andrew Lee and
               Jeffrey Mahler and
               Ken Goldberg},
  title     = {Segmenting Unknown 3D Objects from Real Depth Images using Mask {R-CNN}
               Trained on Synthetic Point Clouds},
  journal   = {CoRR},
  volume    = {abs/1809.05825},
  year      = {2018},
  url       = {http://arxiv.org/abs/1809.05825},
  eprinttype = {arXiv},
  eprint    = {1809.05825},
  timestamp = {Sat, 23 Jan 2021 01:11:29 +0100},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1809-05825.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
				
			

WISDOM Dataset FAQs

What is the WISDOM dataset for Python?

The WISDOM dataset is a synthetic training dataset of 50,000 depth images. The dataset also has 320,000 object masks using simulated heaps of 3D CAD models.

How can I use WISDOM dataset in PyTorch or TensorFlow?

You can stream the WISDOM dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the WISDOM dataset with PyTorch in Python or train a model on the WISDOM dataset with TensorFlow in Python.

Datasets - Previous WIDER Face Dataset Next - Datasets DAISEE Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop