Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

COCO-Text Dataset

Estimated reading: 3 minutes

Visualization of the COCO-Text Train Dataset in the Deep Lake UI

COCO-Text dataset

What is COCO-Text Dataset?

The COCO-Text (Common Objects in Context – Text) Dataset objective is to solve scene text detection and recognition using the largest scene text dataset. The dataset was created using real-scene imagery. The dataset is structured around three tasks End-To-End Recognition, Cropped Word Recognition, and Text Localization.
 
The dataset was created using images of complex everyday scenes and contains various other images which were collected by not keeping in mind text tasks, this has resulted in presence of the vast and diverse amount of text instances in these images.
 
The dataset was annotated with a location in terms of the bounding box, fine-grained classification into machine-printed text and handwritten text, classification into legible and illegible text, the script of the text, and transcriptions of legible text. Currently, the dataset contains a total of 173,589 labeled text regions in over 63,686 images.

Download COCO-Text Dataset in Python

Instead of downloading the COCO-Text dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load COCO-Text Train Subset Dataset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coco-text-train")
				
			

Load COCO-Text Test Subset Dataset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coco-text-test")
				
			

COCO-Text Dataset Structure

COCO-Text Data Fields
  • images: tensor containing images of the dataset.
  • masks: tensor containing masks of the respective image
  • boxes: tensor containing bounding boxes of the respective image
  • languages: tensor containing language of the text
  • legibilities: tensor containing legibility of the text
  • classes: tensor containing a class of the text
  • utf8_strings: tensor containing the text of the image
  • areas: tensor containing the area of the text region
  • images_meta: tensor containing image metadata

How to use COCO-Text Dataset with PyTorch and TensorFlow in Python

Train a model on the COCO-Text dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the COCO-Text dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about COCO-Text Dataset

COCO-Text Dataset Description

  • Homepage: https://rrc.cvc.uab.es/?ch=5&com=introduction
  • Repository: https://github.com/bgshih/coco-text
  • Paper: Veit, A., Matera, T., Neumann, L., Matas, J., & Belongie, S. (2016). Coco-text: Dataset and benchmark for text detection and recognition in natural images. arXiv preprint arXiv:1601.07140.
COCO-Text Dataset Curators
Veit, A., Matera, T., Neumann, L., Matas, J., & Belongie
COCO-Text Dataset Licensing Information
The annotations in this dataset belong to the SE(3) Computer Vision Group at Cornell Tech and are licensed under a Creative Commons Attribution 4.0 License.
COCO-Text Dataset Citation Information
				
					@article{veit2016coco,
  title={Coco-text: Dataset and benchmark for text detection and recognition in natural images},
  author={Veit, Andreas and Matera, Tomas and Neumann, Lukas and Matas, Jiri and Belongie, Serge},
  journal={arXiv preprint arXiv:1601.07140},
  year={2016}
}
				
			
Datasets - Previous ECSSD Dataset Next - Datasets CoQA Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop