Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

CACD Dataset

Estimated reading: 3 minutes

Visualization of the CACD dataset in Deep Lake UI

CACD dataset

What is CACD dataset?

The Cross-Age Celebrity Dataset (CACD) has 163,446 images from 2,000 celebrities. The dataset allows you to estimate the age of a celebrity on a given image as you can subtract the birth year of the individual from the year the photo was taken. The images in the CACD dataset were collected with search engines that used celebrity names and the years 2004 through 2013 as keywords.

Download CACD dataset in Python

Instead of downloading the CACD dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code

Load CACD Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/cacd')
				
			

CACD Dataset Structure

CACD Data Fields
  • images: tensor containing the image of the celebrity’s face.
  • keypoints: tensor to represent facial points.
CACD Data Splits
  • The CACD dataset training set is composed of 163,446 images.

How to use CACD Dataset with PyTorch and TensorFlow in Python

Train a model on CACD dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on CACD dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional information about CACD Dataset

CACD Dataset Description

  • Homepage: https://bcsiriuschen.github.io/CARC/
  • Paper: Bor-Chun Chen, Chu-Song Chen, Winston H. Hsu. Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval, ECCV 2014 [Pdf]
  • Point of Contact: [email protected]
CACD Dataset Curators

Bor-Chun Chen, Chu-Song Chen, Winston H. Hsu

CACD Dataset Licensing information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

CACD Dataset Citation Information
				
					@inproceedings{chen14cross,
Author = {Bor-Chun Chen and Chu-Song Chen and Winston H. Hsu},
Booktitle = {Proceedings of the European Conference on Computer Vision ({ECCV})},
Title = {Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval},
Year = {2014}
}
				
			

CACD Datasets FAQs

What is the CACD dataset for Python?

The Cross-Age Celebrity Dataset (CACD) contains 163,446 pictures of 2,000 celebrities. The images were obtained from the Internet. The dataset is often used for cross-age face recognition and retrieval.

How to download the CACD dataset in Python?

You can load the CACD dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the Load CACD dataset training subset in Python.

How can i use CACD dataset in Pytorch or TensorFlow?

You can stream the CACD dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on training a model on the CACD dataset with PyTorch or training a model on the CACD dataset with TensorFlow in Python.

Datasets - Previous CARPK Dataset Next - Datasets Flickr30k Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop