Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

ATIS Dataset

Estimated reading: 3 minutes

ATIS dataset

What is ATIS Dataset?

The ATIS (Airline Travel Information Systems) dataset contains audio recordings and hand transcripts of individuals querying automated airline travel inquiry systems for flight information. There are 17 distinct purpose types in the data. In the train, development, and test sets, there are 4478, 500, and 893 intent-labeled reference utterances, respectively.

Download ATIS Dataset in Python

Instead of downloading the ATIS dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load ATIS Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/atis-train")
				
			

Load ATIS Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/atis-test")
				
			

ATIS Dataset Structure

ATIS Data Fields
  • intent: tensor containing the labels that represent intents.
  • entity: tensor containing entity.
  • end: tensor contacting index of the end of the sentence.
  • start: tensor containing the index of the beginning of the sentence.
  • value: tensor containing value.
  • text: tensor containing the text.
ATIS Data Splits
  • The ATIS dataset training set is composed of 14923 samples and 22 classes.
  • The ATIS dataset testing set is composed of 2677 samples and 20 classes.

How to use ATIS Dataset with PyTorch and TensorFlow in Python

Train a model on ATIS dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the ATIS dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about ATIS Dataset

ATIS Dataset Description

  • Homepage: https://github.com/howl-anderson/ATIS_dataset/blob/master/README.en-US.md
  • Paper: https://arxiv.org/pdf/1904.03576.pdf
ATIS Dataset Curators
Prashanth Gurunath Shivakumar, Mu Yang, Panayiotis Georgiou
ATIS Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
ATIS Dataset Citation Information
				
					@article{shivakumar2019spoken,
  title={Spoken language intent detection using confusion2vec},
  author={Shivakumar, Prashanth Gurunath and Yang, Mu and Georgiou, Panayiotis},
  journal={arXiv preprint arXiv:1904.03576},
  year={2019}
}
				
			

ATIS Dataset FAQs

What is the ATIS dataset for Python?
The ATIS (Airline Travel Information Systems) is a dataset consisting of audio recordings and corresponding manual transcripts about humans asking for flight information on automated airline travel inquiry systems.
How to download the ATIS dataset in Python?
You can load the ATIS dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the ATIS dataset training subset or the ATIS dataset testing subset in Python.
 
Datasets - Previous CSSD Dataset Next - Datasets Free Spoken Digit Dataset (FSDD)
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop