Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Google Objectron Dataset

Estimated reading: 8 minutes

Visualization of the Objectron bike training set dataset in the Deep Lake UI

Objectron dataset

What is Objectron Dataset?

The Objectron dataset consists of several short, object-centric video clips where the camera steadily moves around the object and captures it from different angles. The videos contain manually annotated 3D bounding boxes describing the object’s position, orientation, and dimensions. The dataset also comes with the metadata from AR sessions, including camera poses sparse point clouds and characterization of the planar surfaces from the surrounding environment. The dataset is collected from 10 countries across five continents, thus ensuring geo-diversity. It consists of 17,095 object instances with 14,819 annotated video clips complemented with 4M annotated images in the following categories: bikes, books, cameras, cereal boxes, chairs, cups, laptops, and shoes.

Download Objectron Dataset in Python

Instead of downloading the Objectron dataset in Python, you can effortlessly load it in Python via our Deep Lake open source with just one line of code.

Load Objectron Dataset Training Subset for the Category Book in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_book_train")
				
			

Load Objectron Dataset Testing Subset for the Category Book in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_book_test")
				
			

Load Objectron Dataset Training Subset for the Category Bike in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_bike_train")
				
			

Load Objectron Dataset Testing Subset for the Category Bike in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_bike_test")
				
			

Load Objectron Dataset Training Subset for the Category Bottle in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_bottle_train")
				
			

Load Objectron Dataset Testing Subset for the Category Bottle in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_bottle_test")
				
			

Load Objectron Dataset Training Subset for the Category Camera in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_camera_train")
				
			

Load Objectron Dataset Testing Subset for the Category Camera in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_camera_test")
				
			

Load Objectron Dataset Training Subset for the Category Cereal box in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_cereal_box_train")
				
			

Load Objectron Dataset Testing Subset for the Category Cereal box in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_cereal_box_test")
				
			

Load Objectron Dataset Training Subset for the Category Chair in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_chair_train")
				
			

Load Objectron Dataset Testing Subset for the Category Chair in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_chair_test")
				
			

Load Objectron Dataset Training Subset for the Category Cup in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_cup_train")
				
			

Load Objectron Dataset Testing Subset for the Category Cup in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_cup_test")
				
			

Load Objectron Dataset Training Subset for the Category Shoe in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_shoe_train")
				
			

Load Objectron Dataset Testing Subset for the Category Shoe in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_shoe_test")
				
			

Load Objectron Dataset Training Subset for the Category Laptop in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_laptop_train")
				
			

Load Objectron Dataset Testing Subset for the Category Laptop in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/objectron_laptop_test")
				
			

Objectron Dataset Structure

Objectron Data Fields
  • camera_extrinsics: tensor containing row major 4×4 transformation matrix describing the camera pose w.r.t. the world origin. The world origin is where the AR session started.
  • camera_intrinsics: tensor containing row-major 3×3 intrinsic matrix describing the focal length and the principal point of the camera.
  • camera_projection: tensor containing row major 4×4 projection matrix.
  • camera_view: tensor containing row major 4×4 view matrix.
  • object_orientation: tensor containing string indicating the orientation of the camera (portrait, landscape).
  • object_scale: tensor containing a list of object scales.
  • object_translation: tensor containing a list of object translations.
  • object_visibility: tensor containing a list of annotation visibilities.
  • plane_center: tensor containing the center point for the ground plane where objects are sitting.
  • plane_normal: tensor containing the normal vector to the ground plane where objects are sitting.
  • point_2d: tensor containing float numbers of all 2D points.
  • point_3d: tensor containing float numbers of all 3D points.
  • point_num: tensor containing point numbers for each instance. The bounding box has 9 points, the skeleton may have a varied number of points.
  • image_channels: an integer representing the number of channels in the image.
  • image_height: an integer representing the height of the image.
  • image_id: an integer representing the frame number in the sequence.
  • image_timestamp: an integer representing the microsecond timestamp of the video frame in the video stream.
  • image_width: an integer representing the height of the image.
  • instance_num: an integer representing the number of object instances in this frame.
  • image: tensor containing an image of dimension (image_height x image_width x image_channels).
Objectron Data Splits
  • Google Objectron dataset training set for class book is composed of 460838 images.
  • Google Objectron dataset testing set for class book is composed of 115389 images.
  • Google Objectron dataset training set for class bike is composed of 123675 images.
  • Google Objectron dataset testing set for class bike is composed of 30714 images.
  • Google Objectron dataset training set for class bottle is composed of 378932 images.
  • Google Objectron dataset testing set for class bottle is composed of 93888 images.
  • Google Objectron dataset training set for class camera is composed of 179175 images.
  • Google Objectron dataset testing set for class camera is composed of 45939 images.
  • Google Objectron dataset training set for class cereal_box is composed of 314910 images.
  • Google Objectron dataset testing set for class cereal_box is composed of 76827 images.
  • Google Objectron dataset training set for class chair is composed of 394529 images.
  • Google Objectron dataset testing set for class chair is composed of 97621 images.
  • Google Objectron dataset training set for class cup is composed of 436513 images.
  • Google Objectron dataset testing set for class cup is composed of 109870 images.
  • Google Objectron dataset training set for class shoe is composed of 445919 images.
  • Google Objectron dataset testing set for class shoe is composed of 115019 images.
  • Google Objectron dataset training set for class laptop is composed of 388792 images.
  • Google Objectron dataset testing set for class laptop is composed of 97074 images.

Google Objectron dataset testing set for class laptop is composed of 97074 images.

How to use Objectron Dataset with PyTorch and TensorFlow in Python

Train a model on Objectron Dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Objectron dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Objectron Dataset

Objectron Dataset Description

  • Homepage: https://www.objectron.dev/
  • Repository: https://github.com/google-research-datasets/Objectron
  • Paper: https://arxiv.org/abs/2012.09988
  • Point of Contact: [email protected], [email protected]
Objectron Dataset Curators
Adel Ahmadyan, Liangkai Zhang, Jianing Wei, Artsiom Ablavatski, Matthias Grundmann
Objectron Dataset Licensing Information
Computational Use of Data Agreement 1.0 (C-UDA-1.0) license
Objectron Dataset Citation Information
				
					@article{objectron2021,
  title={Objectron: A Large Scale Dataset of Object-Centric Videos in the Wild with Pose Annotations},
  author={Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jianing Wei, Matthias Grundmann},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
				
			

Objectron Dataset FAQs

What is the Objectron Dataset for Python?
The Objectron Dataset was introduced to advance the state of the art in 3D object detection. It consists of object-centric 15K annotated videos and 4M annotated images.
 
What is the Objectron Dataset used for?
The Objectron Dataset is commonly used to improve 3D shape representation and enable new research and applications in 3D understanding, video models, object retrieval, view synthetics, and 3D reconstruction.
 
What are the Google Objectron Dataset classes?

The Objectron Dataset consists of 9 different classes: bikes, books, cameras, cereal boxes, chairs, cups, laptops, and shoes.

How to download the Objectron Dataset in Python?

You can load Objectron Dataset fast with one line of code using the open-source package Activeloop Hub in Python. See detailed instructions on how to load Objectron Dataset training subset or Objectron Dataset testing subset in Python.

How can I use Objectron Dataset in PyTorch or TensorFlow?

You can stream Objectron Dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on Objectron Dataset with Pytorch in Python or train a model on Objectron Dataset with TensorFlow in Python.

Deep Lake community member Manas Gupta has contributed to this dataset documentation. You're awesome, Manas!

Datasets - Previous Fashion MNIST Dataset Next - Datasets The Street View House Numbers (SVHN) Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop