Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

PlantVillage Dataset

Estimated reading: 3 minutes

Visualization of PlantVillage Dataset in the Deep Lake UI

PlantVillage Dataset

What is PlantVillage Dataset?

The PlantVillage dataset is created to bring efficient solutions in order to detect 39 different plant diseases. It contains 61,486 images of plant leaves and backgrounds. It was created with six different augmentation techniques for creating more diverse datasets with different background conditions. The augmentations used in this process were scaling, rotation, noise injection, gamma correction, image flipping, and PCA color augmentation.

Downloading PlantVillage Dataset in Python

Instead of downloading the PlantVillage in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load PlantVillage Dataset without Augmentation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/plantvillage-without-augmentation')
				
			

Load PlantVillage Dataset with Augmentation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/plantvillage-with-augmentation')
				
			

PlantVillage Dataset Structure

Data Fields
  • images: tensor containing the image
  • labels: tensor containing labels of the corresponding image

How to use PlantVillage Dataset with PyTorch and TensorFlow in Python

Train a model on PlantVillage dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers = 0, batch_size= 4, shuffle = False)
				
			
Train a model on the PlantVillage dataset with TensorFlow in Python
				
					ds_tensorflow = ds.tensorflow()
				
			

Additional Information about PlantVillage Dataset

PlantVillage Dataset Description

  • Homepage: https://data.mendeley.com/datasets/tywbtsjrjv/1
  • Paper: https://doi.org/10.1016/j.compeleceng.2019.04.011
PlantVillage Dataset Contributors
Arun Pandian J, Geetharamani Gopal
PlantVillage Dataset Licensing Information
Creative Commons CCO 1.0
PlantVillage Dataset Citation Information
				
					@article{hughes2015open,
  title={An open access repository of images on plant health to enable the development of mobile disease diagnostics},
  author={Hughes, David and Salath{\'e}, Marcel and others},
  journal={arXiv preprint arXiv:1511.08060},
  year={2015}
}
				
			

PlantVillage Dataset FAQs

What is the PlantVillage dataset for Python?

The PlantVillage dataset contains 61 486 images of plant leaves and backgrounds. It was made with six augmentation techniques such as scaling, rotation, noise injection, gamma correction, image flipping, and PCA color augmentation. These augmentation techniques were applied to the dataset to create a diverse dataset with different background conditions.

What is the PlantVillage dataset used for?
The PlantVillage dataset may be used for plant disease detection. It can be used to detect the species of the plant and the potential disease that it might have.
What paper was PlantVillage dataset featured in?

The original PlantVillage dataset paper is An open access repository of images on plant health to enable the development of mobile disease diagnostics by Hughes & Salathe (2016). https://arxiv.org/abs/1511.08060

How to download the PlantVillage dataset in Python?

You can load the PlantVillage dataset with one line of code using the open-source package Activeloop Deep Lake. See detailed instructions on how to load the PlantVillage dataset without an augmentation subset in Python or how to load the PlantVillage dataset with an augmentation subset in Python.

How can I use PlantVillage dataset in PyTorch or TensorFlow?

You can stream the PlantVillage dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on training a model on the PlantVillage dataset with PyTorch in Python or training a model on the PlantVillage dataset with TensorFlow in Python.

Datasets - Previous LFW Dataset Next - Datasets Optical Handwritten Digits Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop