Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

AQUA Dataset

Estimated reading: 4 minutes

Visualization of the AQUA  dataset in the Deep Lake UI

AQUA dataset

What is AQUA Dataset?

In the AQUA (Algebra Question Answering with Rationales) Dataset, question-and-answer (QA) pairs are constructed automatically utilizing cutting-edge question-generating methods based on paintings and comments from an existing art knowledge dataset. Crowdsourcing workers clean the QA pairs in terms of grammatical accuracy, answerability, and correctness of answers. Visual (painting-based) and knowledge (comment-based) questions are intrinsically included in the dataset.

Download AQUA Dataset in Python

Instead of downloading the AQUA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load AQUA Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-train")
				
			

Load AQUA Dataset Valiadation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-val")
				
			

Load AQUA Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/aqua-test")
				
			

AQUA Dataset Structure

AQUA Data Fields
  • image: tensor containing the face image.
  • need_external_knowledge: a binary tensor of True/False
  • questions: a text tensor containing questions related to the image.
  • answers: a text tensor containing answers related to the question asked.
AQUA Data Splits
  • The AQUA dataset training set is composed of 17117.
  • The AQUA dataset testing set is composed of 1032.
  • The AQUA dataset validation set is composed of 1040.

How to use AQUA Dataset with PyTorch and TensorFlow in Python

Train a model on AQUA dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on AQUA dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about AQUA Dataset

AQUA Dataset Description

  • Homepage: N/A
  • Repository: https://github.com/noagarcia/ArtVQA
  • Paper: Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura in “A Dataset and Baselines for Visual Question Answering on Art”
  • Point of Contact: N/A
AQUA Dataset Curators

Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura

AQUA Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

AQUA Dataset Citation Information
				
					@InProceedings{garcia2020AQUA,
   author    = {Noa Garcia and Chentao Ye and Zihua Liu and Qingtao Hu and 
                Mayu Otani and Chenhui Chu and Yuta Nakashima and Teruko Mitamura},
   title     = {A Dataset and Baselines for Visual Question Answering on Art},
   booktitle = {Proceedings of the European Conference in Computer Vision Workshops},
   year      = {2020},
}
				
			

AQUA Dataset FAQs

What is the AQUA dataset for Python?

In AQUA Dataset, question-and-answer (QA) pairs are constructed automatically utilizing cutting-edge question-generating methods based on paintings and comments from an existing art knowledge dataset. Crowdsourcing workers clean the QA pairs in terms of grammatical accuracy, answerability, and correctness of answers. Visual (painting-based) and knowledge (comment-based) questions are intrinsically included in the dataset.

How to download the AQUA dataset in Python?

You can load the AQUA dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the AQUA dataset training subset or AQUA data testing subset in Python.

How can I use the AQUA dataset in PyTorch or TensorFlow?

You can stream the AQUA dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the AQUA dataset with PyTorch in Python or train a model on the AQUA dataset with TensorFlow in Python.

Datasets - Previous LOL Dataset Next - Datasets LFPW Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop