Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

GTSRB Dataset

Estimated reading: 4 minutes

Visualization of the GTSRB dataset in the Deep Lake UI

GTSRB dataset

What is GTSRB Dataset?

The German Traffic Sign Recognition Benchmark (GTSRB) includes 43 different types of traffic signs, divided into 39,209 training and 12,630 test pictures. The photographs feature a variety of lighting and settings.

Download GTSRB Dataset in Python

Instead of downloading the GTSRB dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load GTSRB Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/gtsrb-train")
				
			

Load GTSRB Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/gtsrb-test")
				
			

GTSRB Dataset Structure

GTSRB Data Fields
  • images: tensor representing the image in jpg format.
  • boxes: tensor representing bounding box around the traffic sign signal.
  • labels: tensor to represent the category of the signal.
  • shapes: tensor to identify the shape of the signal board.
  • colors: tensor to identify the color of the sign board.
GTSRB Data Splits
  • The GTSRB dataset training set is composed of 39209.
  • The GTSRB dataset testing set is composed of 7357.

How to use GTSRB Dataset with PyTorch and TensorFlow in Python

Train a model on GTSRB dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the GTSRB dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about GTSRB Dataset

GTSRB Dataset Description

  • Homepage: https://benchmark.ini.rub.de/
  • Repository: https://github.com/surmenok/GTSRB
  • Paper: Sebastian Houben and Johannes Stallkamp and Jan Salmen and Marc Schlipsing and Christian Igel in Detection of Traffic Signs in Real-World Images: The {G}erman {T}raffic {S}ign {D}etection {B}enchmark
  • Point of Contact: N/A
GTSRB Dataset Curators

Sebastian Houben and Johannes Stallkamp and Jan Salmen and Marc Schlipsing and Christian Igel

GTSRB Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

GTSRB Dataset Citation Information
				
					@inproceedings{Houben-IJCNN-2013,
   author = {Sebastian Houben and Johannes Stallkamp and Jan Salmen and Marc Schlipsing and Christian Igel},
   booktitle = {International Joint Conference on Neural Networks},
   title = {Detection of Traffic Signs in Real-World Images: The {G}erman {T}raffic {S}ign {D}etection {B}enchmark},
   number = {1288},
   year = {2013},
}
				
			

GTSRB Dataset FAQs

What is the GTSRB dataset for Python?

The German Traffic Sign Recognition dataset is large, organized, open-source, and annotated. It is often used for developing classification machine learning models. In the dataset, although the actual traffic sign is not necessarily a square, or centered, the dataset comes with an annotation file that specifies the bounding boxes for each traffic sign.

How to download the GTSRB dataset in Python?

You can load the GTSRB dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the GTSRB dataset training subset and testing subset in Python.

How can I use the GTSRB dataset in PyTorch or TensorFlow?

You can stream the GTSRB dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the GTSRB dataset with PyTorch in Python or train a model on the GTSRB dataset with TensorFlow in Python.

Datasets - Previous RAVDESS Dataset Next - Datasets CSSD Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop