Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

DomainNet Dataset

Estimated reading: 5 minutes

Visualization of the Domainnet Clipart Train dataset in the Deep Lake UI

DomainNet dataset

What is DomainNet Dataset?

The DomainNet dataset comprises common objects in six different domains. There are 345 classes of objects in all sectors of DomainNet. Bracelets, aircraft, birds, and cellos are among the 345 objects within the dataset. A more detailed breakdown of the six different domains is presented below.

Different DomainNet Datasets

  • DomainNet Clipart: a clipart image collection
  • DomainNet Real: photography and real-world imagery
  • DomainNet Infograph: infographics with specific objects
  • DomainNet Sketch: sketches of specific things
  • DomainNet Paint: creative renderings of objects in the form of paintings
  • DomainNet Quickdraw: drawings by participants from across the world of the game “Quick Draw!”

Download DomainNet Datasets in Python

Instead of downloading the OPA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load DomainNet CLIPART Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-train")
				
			

Load DomainNet CLIPART Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-clip-test")
				
			

Load DomainNet INFOGRAPH Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-train")
				
			

Load DomainNet INFOGRAPH Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-info-test")
				
			

Load DomainNet REAL Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-train")
				
			

Load DomainNet REAL Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-real-test")
				
			

Load DomainNet PAINT Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-train")
				
			

Load DomainNet PAINT Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-paint-test")
				
			

Load DomainNet SKETCH Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-train")
				
			

Load DomainNet SKETCH Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-sketch-test")
				
			

Load DomainNet QUICKDRAW Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-train")
				
			

Load DomainNet QUICKDRAW Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/domainnet-quick-test")
				
			

DomainNet Dataset Structure

DomainNet Data Fields
  • images: tensor containing the face image.
  • labels: tensor to identify the type of object.
DRD Data SplitsDomainNet Data Splits
  • The DomainNet clipart dataset training set is composed of 33525 images.
  • The DomainNet clipart dataset testing set is composed of 15308 images.
  • The DomainNet real dataset training set is composed of 120906 images.
  • The DomainNet real dataset testing set is composed of 54421 images.
  • The DomainNet infograph dataset training set is composed of 36023 images.
  • The DomainNet infograph dataset testing set is composed of 17178 images.
  • The DomainNet paint dataset training set is composed of 50416 images.
  • The DomainNet paint dataset testing set is composed of 25343 images.
  • The DomainNet sketch dataset training set is composed of 48212 images.
  • The DomainNet sketch dataset testing set is composed of 22174 images.

How to use DomainNet Dataset with PyTorch and TensorFlow in Python

Train a model on DomainNet dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on DomainNet dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about DomainNet Dataset

DomainNet Dataset Description

  • Homepage: http://ai.bu.edu/M3SDA/
  • Paper: Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, Bo Wang Our paper is accepted by ICCV 2019 as an Oral Presentation!
  • Point of Contact: N/A
DomainNet Dataset Curators

Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo

DomainNet Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
DomainNet Dataset Citation Information
				
					@inproceedings{peng2019moment,
  title={Moment matching for multi-source domain adaptation},
  author={Peng, Xingchao and Bai, Qinxun and Xia, Xide and Huang, Zijun and Saenko, Kate and Wang, Bo},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={1406--1415},
  year={2019}
}
				
			

DomainNet Dataset FAQs

What is the DomainNet dataset for Python?

The DomainNet was collected and annotated by the largest UDA dataset with six distinct domains and approximately 0.6 million images distributed among 345 categories. DomainNet was created to address the gap in data availability for multi-source UDA research.

How to download the DomainNet dataset in Python?

You can load the DomainNet dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the DomainNet dataset training subset and testing subset in Python.

How can I use the DomainNet dataset in PyTorch or TensorFlow?

You can stream the DomainNet dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the DomainNet dataset with PyTorch in Python or train a model on the Domainnet dataset with TensorFlow in Python.

Datasets - Previous OPA Dataset Next - Datasets HAM10000 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop