Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

GTZAN Genre Dataset

Estimated reading: 4 minutes

Visualization of the GTZAN Genre dataset in the Deep Lake UI

GTZAN dataset

What is GTZAN Genre Dataset?

In 2002, G. Tzanetakis and P. Cook presented their well-known article on genre classification, “Musical genre classification of audio signals”, published in IEEE Transactions on Audio and Speech Processing.

GTZAN Genre Dataset represents a total of 1000 audio tracks with a 30-second duration contained in the dataset. The dataset is divided into a total of 10 genres, each with 100 tracks. All the tracks are 22050Hz Mono 16-bit audio files in .wav format.

Download GTZAN genre Dataset in Python

Instead of downloading the GTZAN dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load GTZAN genre Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/gtzan-genre")
				
			

GTZAN genre Dataset Structure

GTZAN genre Data Fields
  • audio: a tensor containing audio.
  • genre: a class label tensor to classify audio into 10 classes
GTZAN genre Data Splits
  • GTZAN genre contains a single split with 10000 audio tracks

How to use GTZAN genre Dataset with PyTorch and TensorFlow in Python

Train a model on GTZAN genre dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line data loader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the GTZAN genre dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about GTZAN genre Dataset

  • Homepage: http://marsyas.info/downloads/datasets.html
  • Repository: https://github.com/chittalpatel/Music-Genre-Classification-GTZAN
  • Paper: Musical genre classification of audio signals ” by G. Tzanetakis and P. Cook
  • Point of Contact: [email protected]
  • Dataset Curators: G. Tzanetakis and P. Cook
Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Citation Information
				
					@ONLINE {kaggle-diabetic-retinopathy,
    author = "Kaggle and EyePacs",
    title  = "Kaggle Diabetic Retinopathy Detection",
    month  = "jul",
    year   = "2015",
    url    = "https://www.kaggle.com/c/diabetic-retinopathy-detection/data"
}
				
			

GTZAN genreDataset FAQs

What is the GTZAN Genre Collection dataset for Python?

The GTZAN genre collection dataset consists of 1000 audio files each being 30 seconds in duration. The dataset contains 10 classes that represent 10 music genres. The music genres include blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, and rock. Each class contains 100 audio tracks that are in .wav format.

What is the GTZAN Genre collection dataset used for?

The GTZAN Genre collection dataset is used as a benchmark dataset in the field of machine learning. The GTZAN Genre collection dataset is used for music classification into different genres. This dataset was used in the popular paper “Musical genre classification of audio signals” by G. Tzanetakis and P. Cook.

How to download the GTZAN Genre dataset in Python?

With the open-source package Activeloop Deep Lake you can load the GTZAN Genre dataset fast with one line of code in Python. See detailed instructions on how to load the GTZAN Genre dataset training subset in Python.

How can I use the GTZAN Genre dataset in PyTorch or TensorFlow?

Using the open-source package Activeloop Deep Lake you can stream the GTZAN Genre dataset while training a model in PyTorch or TensorFlow with one line of code. See detailed instructions on how to train a model on the GTZAN Genre dataset with PyTorch in Python or train a model on the GTZAN Genre dataset with TensorFlow in Python.

Datasets - Previous SWAG Dataset Next - Datasets HASYv2 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop