Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

DRIVE Dataset

Estimated reading: 3 minutes

Visualization of the Drive train dataset in the Deep Lake UI

DRIVE Dataset

What is DRIVE Dataset?

The DRIVE (Digital Retinal Images for Vessel Extraction) dataset has been created to enable studies on retinal vessel segmentation. DRIVE dataset pictures were collected from diabetic retinopathy patients in the Netherlands. The dataset contains images from 400 diabetic patients between 25 and 90 years of age. 40 photographs have been randomly selected, with only 7 showing signs of mild early diabetic retinopathy. Automatic retinal map generation and branch point extraction were used to record time or multimedia images, and synthesize the retinal image mosaic.

Download DRIVE Dataset in Python

Instead of downloading the DRIVE dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load DRIVE Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/drive-train")
				
			

Load DRIVE Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/drive-test")
				
			

DRIVE Dataset Structure

Data Fields
For training set:
  • rgb_images: tensor containing the image.
  • manual_masks/mask: tensor containing mask.
  • masks/mask: tensor containing mask.
For the testing set:
  • rgb_images: tensor containing the image.
  • masks: tensor containing mask.
DRIVE Data Splits
  • The DRIVE dataset training set is composed of 20 images. Only a single manual segmentation of the vasculature is provided for training images.
  • The DRIVE dataset test set is composed of 20 images. There are 2 manual segmentations provided where one is used as a golden standard and the other is used for comparing computer-generated segmentation with that manual segmentation.

How to use DRIVE Dataset with PyTorch and TensorFlow in Python

Train a model on DRIVE dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the DRIVE dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

DRIVE Dataset Creation

Data Collection and Normalization Information
Images were taken using a Canon CR5 non-mydriatic 3 CCD camera with a 45-degree field of view (FOV). Each image was captured at 768 x 584 pixels using 8 bits per color plane. The FOV of each image is circular and has a diameter of approximately 540 pixels. In this database, the image is cropped around the FOV. For each image, a mask image depicting the FOV is provided.

Additional Information about DRIVE Dataset

DRIVE Dataset Description

  • Homepage: https://drive.grand-challenge.org/
  • Repository: N/A
  • Paper: Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., & Van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4), 501-509.
  • Point of Contact: N/A
DRIVE Dataset Curators
Joes Staal, M.D. Abramoff, M. Niemeijer, M.A. Viergever, B. van Ginneken
DRIVE Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
DRIVE Dataset Citation Information
				
					@article{staal2004ridge,
  title={Ridge-based vessel segmentation in color images of the retina},
  author={Staal, Joes and Abr{\`a}moff, Michael D and Niemeijer, Meindert and Viergever, Max A and Van Ginneken, Bram},
  journal={IEEE transactions on medical imaging},
  volume={23},
  number={4},
  pages={501--509},
  year={2004},
  publisher={IEEE}
}
				
			
Datasets - Previous Fashionpedia Dataset Next - Datasets Kaggle Cats & Dogs Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop