Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

DAISEE Dataset

Estimated reading: 4 minutes

DAISEE Dataset

What is DAiSEE Dataset?

The DAiSEE dataset is the first multi-label video classification dataset. It is made up of 9068 video snippets captured from 112 users. The videos recognize the user’s state of boredom, confusion, engagement, and frustration. The dataset has four levels of labels (very low, low, high, and very high) for each of the affective states. The labels were crowd annotated and correlated with a gold standard annotation created using a team of expert psychologists.

Download DAiSEE Dataset in Python

Instead of downloading the DAiSEE dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load DAISEE Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-train")
				
			

Load DAISEE Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-test")
				
			

Load DAISEE Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/daisee-validation")
				
			

DAISEE Dataset Structure

DAISEE Data Fields
  • video: tensor representing video file.
  • boredom: tensor to classify boredom from very low to very high.
  • engagement: tensor to classify engagement from very low to very high.
  • confusion: tensor to classify confusion from very low to very high.
  • frustration: tensor to classify frustration from very low to very high.
  • gender: tensor to classify based on the gender of the speaker.
DAISEE Data Splits
  • The DAISEE dataset training set is composed of 5482.
  • The DAISEE dataset validation set is composed of 1723
  • The DAISEE dataset testing set is composed of 1720

How to use DAISEE Dataset with PyTorch and TensorFlow in Python

Train a model on DAISEE dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the DAISEE dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about DAISEE Dataset

DAISEE Dataset Description

  • Homepage: https://people.iith.ac.in/vineethnb/resources/daisee/index.html
  • Repository: N/A
  • Paper: Introduced by Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, Vineeth Balasubramanian in DAiSEE: Towards User Engagement Recognition in the Wild
  • Point of Contact: [email protected]
ADAISEE Dataset Curators

Abhay Gupta, Arjun D’Cunha, Kamal Awasthi, Vineeth Balasubramanian

DAISEE Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
DAISEE Dataset Citation Information
				
					@article{Gupta2016DAISEEDF,
  title={DAISEE: Dataset for Affective States in E-Learning Environments},
  author={Abhay Gupta and Richik Jaiswal and Sagar Adhikari and Vineeth N. Balasubramanian},
  journal={ArXiv},
  year={2016},
  volume={abs/1609.01885}
}
				
			

DAISEE Dataset FAQs

What is the DAISEE dataset for Python?

DAiSEE is a multi-label video classification dataset comprising 9,068 video clips from 112 people. It is a popular dataset for identifying various emotional states (boredom, confusion, engagement, and frustration) in real-life situations. The dataset was developed to provide a springboard for further research in the field of feature extraction and context-based inference.

How to download the DAISEE dataset in Python?

You can load the DAISEE dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the DAISEE dataset training subset and testing subset in Python.

How can I use the DAISEE dataset in PyTorch or TensorFlow?

You can stream the DAISEE dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the DAISEE dataset with PyTorch in Python or train a model on the DAISEE dataset with TensorFlow in Python

Datasets - Previous WISDOM Dataset Next - Datasets WIDER Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop