Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

UCF Sports Action Dataset

Estimated reading: 3 minutes

Visualization of UCF SPORTS action dataset in the Deep Lake UI

UCF Sports Action dataset

What is UCF Sports Action Dataset?

The UCF Sports dataset includes many images of sports collected from different games which were highlighted on TV stations like the BBC and ESPN. The video arrangements were obtained from a wide scope of stock video sequence websites including BBC Motion display and GettyImages. The dataset contains 150 groupings with a resolution of 720 x 480. The collection represents a natural pool of actions featured in a wide range of scenes and viewpoints.

Download UCF Sports Action Dataset in Python

Instead of downloading the UCF Sports Action dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load UCF Sports Action Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/ucf-sports-action')
				
			

UCF Sports Action Dataset Structure

UCF Sports Action Data Fields
  • images: tensor containing the image.
  • boxes: tensor to represent bounding boxes.
  • labels: tensor to classify the activities.
UCF Sports Action Data Splits
  • The UCF Sports Action dataset training set is composed of 17270.

How to use UCF Sports Action Dataset with PyTorch and TensorFlow in Python

Train a model on UCF Sports Action dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the UCF Sports Action dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about UCF Sports Action Dataset

UCF Sports Action Dataset Description

  • Homepage: https://www.crcv.ucf.edu/data/UCF_Sports_Action.php
  • Paper: Khurram Soomro and Amir R. Zamir, Action Recognition in Realistic Sports Videos, Computer Vision in Sports, Springer International Publishing, 2014.
  • Point of Contact: N/A
UCF Sports Action Dataset Curators

Khurram Soomro and Amir R. Zamir

UCF Sports Action Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
UCF Sports Action Dataset Citation Information
				
					@inproceedings{danielczuk2019segmenting,
  title={Action Recognition in Realistic Sports Videos},
  author={Khurram Soomro and Amir R. Zamir,},
  booktitle={Computer Vision in Sports, Springer International Publishing},
  year={2014}
}
				
			

UCF Sports Action Dataset FAQs

What is the UCF Sports Action dataset for Python?

The UCF Sports dataset is made of video sequences obtained from a wide scope of stock image websites including BBC Motion display and GettyImages. The dataset contains 150 groupings with a resolution of 720 x 480. The collection represents a natural pool of actions featured in a wide range of scenes and viewpoints.

How can I use UCF Sports Action dataset in PyTorch or TensorFlow?

You can stream the UCF Sports Action dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the UCF Sports Action dataset with PyTorch in Python or train a model on the UCF Sports Action dataset with TensorFlow in Python.

Datasets - Previous LSP Dataset Next - Datasets Wiki Art Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop