Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

STN-PLAD Dataset

Estimated reading: 3 minutes

Visualization of STN-PLAD Dataset in the Deep Lake UI

STN-PLAD Dataset

What is STN-PLAD Dataset?

This STN-PLAD (STN Power Line Assets Dataset) dataset was generated to aid power line companies in detecting high-voltage power line towers in order to avoid putting workers at risk. The dataset contains 5 different annotated object classes such as Stockbridge damper, spacer, transmission tower, tower plate, and insulator. Each object class has an average of 18.1 annotated instances in total images of 133 power lines. The images were taken from various angles, resolutions, backgrounds, and illumination. All the images were taken through a hi-res UAV. This dataset can make use of popular deep object detection methods.

Downloading STN-PLAD Dataset in Python

Instead of downloading the STN-PLAD in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load STN-PLAD Dataset Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/stn-plad')
				
			

STN-PLAD Dataset Structure

Data Fields
  • images: tensor containing the image
  • images_meta: contains meta information of images
  • boxes: a group of tensors holding boxes with information on the categories
  • categories: tensor containing categories of Power Line Assets
  • super_categories: tensor containing super category of the Power Line Assets
  • areas: tensor holding the information of the area of the box
  • iscrowds: bool value containing information about whether a certain image should be allowed for training
  • date_captured: the date on which the images were collected
  • file_name: contains the name of the image
  • height: contains the height of the image
  • width: contains the width of the image

How to use STN-PLAD Dataset with PyTorch and TensorFlow in Python

Train a model on STN-PLAD dataset with PyTorch in Python
Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:
				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on STN-PLAD dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about STN-PLAD Dataset

STN-PLAD Dataset Description

  • Repository: https://github.com/andreluizbvs/PLAD
  • Paper: https://arxiv.org/abs/2108.07944
STN-PLAD Dataset Licensing Information
Creative Commons CCO 1.0
STN-PLAD Dataset Citation Information
				
					@inproceedings{vieira2021stn,
  title={STN PLAD: A Dataset for Multi-Size Power Line Assets Detection in High-Resolution UAV Images},
  author={Vieira-e-Silva, Andr{\'e} Luiz Buarque and de Castro Felix, Heitor and de Menezes Chaves, Thiago and Sim{\~o}es, Francisco Paulo Magalh{\~a}es and Teichrieb, Veronica and dos Santos, Michel Mozinho and da Cunha Santiago, Hemir and Sgotti, Virginia Ad{\'e}lia Cordeiro and Neto, Henrique Baptista Duffles Teixeira Lott},
  booktitle={2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)},
  pages={215--222},
  year={2021},
  organization={IEEE}
}
				
			
Datasets - Previous UCI Seeds Dataset Next - Datasets Caltech 101 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop