Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Food 101 Dataset

Estimated reading: 3 minutes

Visualization of the Food 101 dataset in the Deep Lake UI

Food 101 Dataset dataset

What is Food 101 Dataset Dataset?

Food 101 dataset comprises of 101 food classifications, with 101,000 pictures. For each class, 250 physically assessed test pictures are given as well as 750 preparation pictures. The labels for the test images have been manually cleaned, while the training set contains some intentional noise.

Download Food 101 Dataset Dataset in Python

Instead of downloading the Food 101 Dataset dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Food 101 Dataset Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/food-101-dataset-train')
				
			

Food 101 Dataset Dataset Structure

Food 101 Data Fields
  • images: tensor containing the various food image.
  • labels: tensor contains different categories of foods.
  • classes: tensor to various classes of food.
Food 101 Data Splits
  • The Food 101 dataset training set is composed of 71096 images.

How to use Food 101 Dataset Dataset with PyTorch and TensorFlow in Python

Train a model on Food 101 Dataset dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Food 101 Dataset dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Food 101 Dataset Dataset

Food 101 Dataset Dataset Description

  1. Homepage:https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/
  2. Repository: N/A
  3. Paper: Introduced by Lukas Bossard et al. in Food-101 – Mining Discriminative Components with Random Forests
  4. Point of Contact: N/A
Food 101 Dataset Dataset Curators

Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc

Food 101 Dataset Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Food 101 Dataset Dataset Citation Information
				
					@inproceedings{bossard14,
  title = {Food-101 -- Mining Discriminative Components with Random Forests},
  author = {Bossard, Lukas and Guillaumin, Matthieu and Van Gool, Luc},
  booktitle = {European Conference on Computer Vision},
  year = {2014}
}
				
			

Food 101 Dataset Dataset FAQs

What is the Food 101 Dataset dataset for Python?

The Food 101 dataset has 101 food classifications, with 101,000 pictures. The labels for the test images have been manually cleaned, while the training set images have intentional noise.

How to download the Food 101 Dataset dataset in Python?

You can load Food 101 dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load Food 101 dataset training subset in Python.

How can I use Food 101 Dataset dataset in PyTorch or TensorFlow?

You can stream Food 101 dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on Food 101 dataset with PyTorch in Python or train a model on Food 101 dataset with TensorFlow in Python.

Datasets - Previous 300w Dataset Next - Datasets VCTK Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop