Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Adience Dataset

Estimated reading: 3 minutes

Visualization of Adience dataset in the Deep Lake UI

Adience Dataset

What is Adience Dataset?

The Adience Dataset was created to aid the study of age and gender recognition and can be also used as a benchmark dataset for face photos. The dataset is as close as it can get to real-world face imaging conditions. The dataset contains 26,580 photos with 8 age groups(labels) taken by 2,284 subjects on iPhone 5 (or later) and the images set for Flicker albums. The dataset has a diverse collection of faces having variations in poses, appearance, noise, lighting, and more.

Downloading Adience Dataset in Python

Instead of downloading the Adience in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.
 

Load Adience Fold Faces Dataset Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/adience')
				
			

Adience Dataset Structure

Adience Data Fields
Data Fields
  • images: tensor containing the image
  • ages: tensor containing ages (label) of a corresponding image
  • gender: tensor containing the gender of each image
  • x: part of the bounding box of the face in the original Flickr image
  • y: part of the bounding box of the face in the original Flickr image
  • dx: part of the bounding box of the face in the original Flickr image
  • dy: part of the bounding box of the face in the original Flickr image
  • tilt_ang: pose of the face in the original Flickr image
  • fiducial_yaw_angle: pose of the face in the original Flickr image
  • fiducial_score: score of the landmark detector
Adience Data Splits
  • The Adience dataset training set is composed of 19370 images.

How to use Adience Dataset with PyTorch and TensorFlow in Python

Train a model on Adience dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Adience dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Adience Dataset

Adience Dataset Description

  • Homepage: https://talhassner.github.io/home/projects/Adience/Adience-data.html
Adience Dataset Curators
E. Eidinger, R. Enbar, and T. Hassner
Adience Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
Adience Dataset Citation Information
				
					@article{eidinger2014age,
  title={Age and gender estimation of unfiltered faces},
  author={Eidinger, Eran and Enbar, Roee and Hassner, Tal},
  journal={IEEE Transactions on Information Forensics and Security},
  volume={9},
  number={12},
  pages={2170--2179},
  year={2014},
  publisher={IEEE}
}
				
			

Adience Dataset FAQs

What is the Adience dataset for Python?

The Adience Dataset was created to aid the study of age and gender recognition and can be also used as a benchmark dataset for face photos. The dataset is as close as it can get to real-world face imaging conditions.

How can I use the Adience dataset in PyTorch or TensorFlow?
You can stream the Adience dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the Adience dataset with PyTorch in Python or train a model on the Adience dataset with TensorFlow in Python.
 
Datasets - Previous FER2013 Dataset Next - Datasets PPM-100 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop