Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

CoQA Dataset

Estimated reading: 3 minutes

CoQA dataset

What is CoQA Dataset?

The CoQA (Conversational Question Answering) dataset is a large-scale dataset for developing conversational question-answering systems. CoQA has over 127,000 questions and answers from over 8000 discussions. The CoQA challenge aims to assess machines’ capacity to comprehend a written passage and respond to a series of interconnected questions that emerge during a conversation.

Download CoQA Dataset in Python

Instead of downloading the MNIST dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load CoQA Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coqa-train")
				
			

Load CoQA Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/coqa-val")
				
			

CoQA Dataset Structure

CoQA Data Fields
  • id: tensors containing id.
  • sources: tensors containing sources
  • filenames: tensor that contains filenames
  • stories: tensor that contains stories
  • questions: tensors containing questions
  • turnids: tensors containing turnids
  • ans_start: tensors containing starting index of answers
  • ans_end: tensor that contains the ending index of answers
  • span_text answers: tensor that contains answers
CoQA Data Splits
  • The CoQA dataset training set is composed of 108647 samples.
  • The CoQA dataset val set is composed of 7983 samples.

How to use CoQA Dataset with PyTorch and TensorFlow in Python

Train a model on CoQA dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the CoQA dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

CoQA Dataset Creation

Additional Information about CoQA Dataset

CoQA Dataset Description

  • Homepage: https://stanfordnlp.github.io/coqa/
  • Paper: https://arxiv.org/pdf/1808.07042.pdf
  • Point of Contact: [email protected] or https://groups.google.com/forum/#!forum/coqa or [email protected]
CoQA Dataset Curators
Siva Reddy, Danqi Chen, Christopher D. Manning
CoQA Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
CoQA Dataset Citation Information
				
					@article{reddy2019coqa,
  title={Coqa: A conversational question answering challenge},
  author={Reddy, Siva and Chen, Danqi and Manning, Christopher D},
  journal={Transactions of the Association for Computational Linguistics},
  volume={7},
  pages={249--266},
  year={2019},
  publisher={MIT Press}
}
				
			

CoQA Dataset FAQs

What is CoQA dataset for Python?

CoQA has 127,000+ questions and answers from 8000+ discussions. Conversations are between two people and are in the form of questions and answers regarding a passage. The questions are conversational, the answers can be free-form text, and each answer includes an evidence subsequence marked in the passage and the passages from seven different domains.

What is the CoQA dataset used for?
The CoQA challenge aims to assess machines’ capacity to comprehend a written passage and respond to a series of interconnected questions that emerge during a conversation. This dataset is often used in the field of natural language processing.
 
How to use and download the CoQA dataset in Python?

Using the open-source package Activeloop Deep Lake the CoQA dataset can quickly be loaded with just one line of code. See detailed instructions on how to load the CoQA dataset training subset and how to load the validation subset in Python.

Datasets - Previous COCO-Text Dataset Next - Datasets FGNET Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop