Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

FIGRIM Dataset

Estimated reading: 3 minutes

Visualization of figrim dataset in the Deep Lake UI

FIGRIM dataset

What is FIGRIM Dataset?

FIne-GRained Image Memorability (FIGRIM) is a dataset of 9428 images, 1754 of which are target images for which we obtained memorability scores. The images contain 21 scene categories from the SUN database. Each scene category contains at least 300 images of size 700×700 or greater. All images were cropped to 700×700 pixels.

Download FIGRIM Dataset in Python

Instead of downloading the FIGRIM dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load FIGRIM Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/figrim')
				
			

FIGRIM Dataset Structure

FIGRIM Data Fields
  • image: tensor containing the image.
  • labels: tensor to represent a category of an image.
FIGRIM Data Splits

The FIGRIM dataset training set is composed of 9428.

How to use FIGRIM Dataset with PyTorch and TensorFlow in Python

Train a model on FIGRIM dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line data loader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the FIGRIM dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about FIGRIM Dataset

FIGRIM Dataset Description

  • Homepage: http://figrim.mit.edu/
  • Paper: Introduced by Bylinskii, Zoya and Isola, Phillip and Bainbridge, Constance and Torralba, Antonio and Oliva, Aude in Intrinsic and Extrinsic Effects on Image Memorabilit
  • Point of Contact: [email protected]
FIGRIM Dataset Curators

Bylinskii, Zoya and Isola, Phillip and Bainbridge, Constance and Torralba, Antonio and Oliva, Aude

FIGRIM Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
FIGRIM Dataset Citation Information
				
					@article{figrim,
  title={Intrinsic and Extrinsic Effects on Image Memorability},
  author={Bylinskii, Zoya and Isola, Phillip and Bainbridge, Constance and Torralba, Antonio and Oliva, Aude},
  journal={Vision research},
  volume={116},
  pages={165--178},
  year={2015},
  publisher={Elsevier}
}
				
			

FIGRIM Dataset FAQs

What is the FIGRIM dataset for Python?

FIGRIM is a dataset of 9428 images, 1754 of which are target images for which we obtained memorability scores. Each scene category in the dataset contains at least 300 images of size 700×700 or greater. The images also contain 21 scene categories from the SUN database. All images were cropped to 700×700 pixels.

How can I use the FIGRIM dataset in PyTorch or TensorFlow?

You can stream the FIGRIM dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the FIGRIM dataset with PyTorch in Python or train a model on the FIGRIM dataset with TensorFlow in Python.

Datasets - Previous Wiki Art Dataset Next - Datasets ANIMAL (ANIMAL10N) Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop