Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

UTZappos50k Dataset

Estimated reading: 4 minutes

Visualization of the UTZappos dataset in the Deep Lake UI

UTZappos50k dataset

What is UTZappos50k Dataset?

UT Zappos50K (UT-Zap50K) is a huge shoe dataset that contains 50,025 catalog photos from Zappos.com. Shoes, sandals, slippers, and boots are the four primary shoe types in the dataset. The dataset also includes the functional types for each boot and specific brand names. The shoe images are centered on a white background and pictured in the same orientation for convenient analysis. GIST and LAB color features are provided in the dataset. Also, each image has eight associated meta-data (gender, materials, etc.) labels that are used to filter the shoes on Zappos.com.

Download UTZappos50k Dataset in Python

Instead of downloading the UTZappos50k dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load UTZappos50k Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/utzappo")
				
			

UTZappos50k Dataset Structure

UTZappos50k Data Fields
  • image: tensor containing the face image.
  • categories: tensor to represent the footwear category.
  • closures: tensor to represent the type of footwear closure.
  • sub_categories: tensor to represent the subcategory.
  • in_soles: tensor to label between various insoles for footwear.
  • genders: tensor to represent various gender for footwear.
  • materials: tensor to represent the type of material for footwear.
  • toe_styles: tensor to distinguish different toe styles.
UTZappos50k Data Splits
  • The UTZappos50k dataset training set is composed of 50024.

How to use UTZappos50k Dataset with PyTorch and TensorFlow in Python

Train a model on the UTZappos50k dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the UTZappos50k dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about UTZappos50k Dataset

UTZappos50k Dataset Description

  • Homepage: https://vision.cs.utexas.edu/projects/finegrained/utzap50k/
  • Repository: N/A
  • Paper: A. Yu and K. Grauman. “Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images”. In ICCV, 2017.
  • Point of Contact: N/A
UTZappos50k Dataset Curators
A. Yu and K. Grauman
UTZappos50k Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
UTZappos50k Dataset Citation Information
				
					@inproceedings{,
  title = {Semantic Jitter: Dense Supervision for Visual Comparisons via Synthetic Images},
  author = {A. Yu and K. Grauman},
  booktitle = {ICCV},
  year = {2017} 
}
				
			

UTZappos50k Dataset FAQs

What is the UTZappos50k dataset for Python?

The UT Zappos50K (UT-Zap50K) dataset contains 50,025 catalog photos from Zappos.com. Each image in the dataset has eight associated meta-data (gender, materials, etc.) labels that are used to filter the shoes on Zappos.com. Shoes, sandals, slippers, and boots are the four primary categories, followed by functional types and specific brands.

How can I use UTZappos50k in PyTorch or TensorFlow?
You can stream the UTZappos50k dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the UTZappos50k dataset with PyTorch in Python or train a model on the UTZappos50k dataset with TensorFlow in Python.
 
Datasets - Previous GlaS Dataset Next - Datasets Pascal VOC 2012 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop