Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

MURA Dataset

Estimated reading: 3 minutes

Visualization of the MURA dataset in the Deep Lake UI

MURA dataset

What is MURA Dataset?

MURA is a large musculoskeletal radiograph dataset containing 40,561 images from 14,863 exams, where each exam is labeled normal or abnormal by radiologists themselves. Researchers can use this dataset to see if their models perform as accurately as radiologists on the task.

Download MURA Dataset in Python

Instead of downloading the MURA dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load MURA Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/mura-train")
				
			

Load MURA Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/mura-val")
				
			

MURA Dataset Structure

MURA Data Fields
  • images: tensor containing the image.
  • region: tensor containing the name of one of the seven regions of studies such as elbow, finger, forearm, hand, humerus, shoulder, and wrist to which the image belongs to.
  • study: tensor containing the studies.
  • study_type: tensor containing the study type which can be either positive or negative.
  • patient_id: tensor containing the id of the patient.
MURA Data Splits
  • The MURA dataset training set is composed of 11,184 patients, 13,457 studies, and 36,808 images.
  • The MURA dataset validation set is composed of 783 patients, 1,199 studies, and 3,197 images.

How to use MURA Dataset with PyTorch and TensorFlow in Python

Train a model on MURA dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on MURA dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

MURA Dataset Creation

Data Collection and Normalization Information

To evaluate models and assess radiologist performance, additional labels from six certified Stanford radiologists were collected in a test set of 207 musculoskeletal exams. In this test set, the gold standard is a majority vote of a group of three radiologists.

Additional Information about MURA Dataset

MURA Dataset Description

  • Homepage: https://stanfordmlgroup.github.io/competitions/mura/
  • Repository: N/A
  • Paper: MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs, Pranav Rajpurkar*, Jeremy Irvin*, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon Yang, Kaylie Zhu, Dillon Laird, Robyn L. Ball, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew Y. Ng
  • Point of Contact: https://groups.google.com/forum/#!forum/mura-dataset
MURA Dataset Curators

Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta, Brandon Yang, Kaylie Zhu, Dillon Laird, Robyn L. Ball, Curtis Langlotz, Katie Shpanskaya, Matthew P. Lungren, Andrew Y. Ng

MURA Dataset Licensing Information

More information about the license can be found here. Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

MURA Dataset Citation Information
				
					@article{rajpurkar2017mura,
  title={MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs},
  author={Rajpurkar, Pranav and Irvin, Jeremy and Bagul, Aarti and Ding, Daisy and Duan, Tony and Mehta, Hershel and Yang, Brandon and Zhu, Kaylie and Laird, Dillon and Ball, Robyn L and others},
  journal={arXiv preprint arXiv:1712.06957},
  year={2017}
}
				
			
Datasets - Previous Sentiment-140 Dataset Next - Datasets LIAR Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop