Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Visdrone Dataset

Estimated reading: 3 minutes

Visualization of the Visdrone -DET dataset in the Deep Lake UI

Visdrone Dataset

What is Visdrone Dataset?

The AISKYEYE team at Tianjin University Lab of Machine Learning and Data Mining has gathered the data for the VisDrone benchmark dataset. It is designed to promote the integration of vision and drones.

The benchmark dataset consists of 288 video clips composed of 261,908 frames and 10,209 static photos collected by several drone-mounted cameras, encompassing a wide variety of features such as location (taken from 14 different cities separated by thousands of kilometers in China), environment (urban and country), objects (pedestrian, automobiles, bicycles, etc.), and density (sparse and crowded scenes). It should be noted that the dataset was gathered utilizing a variety of drone platforms (i.e., drones of various types), in a variety of settings, and under a variety of weather and lighting circumstances.

Download Visdrone-DET Dataset in Python

Instead of downloading the Visdrone-DET dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Visdrone-DET Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/visdrone-det-train")
				
			

Load Visdrone-DET Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/visdrone-det-test")
				
			

Load Visdrone-DET Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/visdrone-det-val")
				
			

Load Visdrone-DET Dataset Testing-DEV Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/visdrone-det-test-dev")
				
			

Visdrone-DET Dataset Structure

Visdrone-DET Data Fields
  • image: tensor containing the image
  • label: tensor representing the object detected.
  • boxes: tensor representing bounding box for the object of interest
Visdrone-DET Data Splits
  • The Visdrone-DET training split comprises 6471 images.
  • The Visdrone-DET testing split comprises 548 images.
  • Visdrone-DET validation split comprises 1580 images.
  • Visdrone-DET test-dev split comprises 1610 images.

How to use Visdrone-DET Dataset with PyTorch and TensorFlow in Python

Train a model on Visdrone-DET dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Visdrone-DET dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Visdrone-DET Dataset

Visdrone-DET Dataset Description

  • Homepage: http://aiskyeye.com/download/
  • Repository: https://github.com/VisDrone/VisDrone-Dataset
  • Paper: Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin: Detection and Tracking Meet Drones Challenge
Visdrone-DET Dataset Curators

Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin

Visdrone-DET Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Visdrone-DET Dataset Citation Information
				
					@ARTICLE{9573394,
  author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Detection and Tracking Meet Drones Challenge}, 
  year={2021},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2021.3119563}}
				
			
Datasets - Previous WFLW Dataset Next - Datasets 11k Hands Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop