Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

GlaS Dataset

Estimated reading: 3 minutes

Visualization of the GlaS Train Dataset in the Deep Lake UI

GlaS dataset

What is GlaS Dataset?

The GlaS (Gland Segmentation) Dataset is created to encourage research in gland segmentation algorithms on images of hematoxylin and Eosin (H&E) stained slides (consists of a variety of histologic grades). The dataset ground truth annotations have been annotated by expert pathologists. There are 37 benign and 48 malignant training images. The testing dataset contains 37 benign and 43 malignant images. In total, the dataset contains 165 images.

Download GlaS Dataset in Python

Instead of downloading the GlaS dataset in Python, you can effortlessly load it in Python via our Deep Lake open source with just one line of code.

Load GlaS Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/glas-train")
				
			

Load GlaS Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/glas-test")
				
			

GlaS Dataset Structure

GlaS Data Fields
  • images: tensor containing images of the hematoxylin and Eosin (H&E) stained slides.
  • masks: tensor containing a segmented area of their respective images.
  • grade_Glas: tensor containing labels of cancer type.
  • grade_Sirinukunwattana: tensor containing labels of patient health patient_ids: tensor containing patient ids.

How to use GlaS Dataset with PyTorch and TensorFlow in Python

Train a model on the GlaS dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the GlaS dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about GlaS Dataset

GlaS Dataset Description

  • Homepage: https://warwick.ac.uk/fac/cross_fac/tia/data/glascontest/
  • Paper: Sirinukunwattana, K., Snead, D. R., & Rajpoot, N. M. (2015). A stochastic polygons model for glandular structures in colon histology images. IEEE transactions on medical imaging, 34(11), 2366-2378.
GlaS Dataset Curators
Sirinukunwattana, Korsuk, David RJ Snead, and Nasir M. Rajpoot.
GlaS Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
GlaS Dataset Citation Information
				
					@article{sirinukunwattana2015stochastic,
  title={A stochastic polygons model for glandular structures in colon histology images},
  author={Sirinukunwattana, Korsuk and Snead, David RJ and Rajpoot, Nasir M},
  journal={IEEE transactions on medical imaging},
  volume={34},
  number={11},
  pages={2366--2378},
  year={2015},
  publisher={IEEE}
}
				
			
Datasets - Previous ESC-50 Dataset Next - Datasets UTZappos50k Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop