Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

ECSSD Dataset

Estimated reading: 3 minutes

Visualization of the ECSSD Dataset in the Deep Lake UI

ECSSD dataset

What is ECSSD Dataset?

The ECSSD (Extended Complex Scene Saliency) Dataset is created to enhance research in the segmentation of complex scene saliency images. It was generated to substitute the MSRA-1000 dataset which normally has images having smooth and simple background structures. The dataset brings natural images which are diverse in nature. All the images were acquired from the internet and with help of 5 helpers in producing ground truth masks. This dataset contains 1000 natural images with well-annotated masks.

Download ECSSD Dataset in Python

Instead of downloading the ECSSD dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load ECSSD Dataset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/ecssd")
				
			

ECSSD Dataset Structure

ECSSD Data Fields
  • images: tensor containing images.
  • masks: tensor containing masks of respective images.

How to use ECSSD Dataset with PyTorch and TensorFlow in Python

Train a model on the ECSSD dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the ECSSD dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about ECSSD Dataset

ECSSD Dataset Description

  • Homepage: https://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/dataset.html
  • Paper: Shi, J., Yan, Q., Xu, L., & Jia, J. (2015). Hierarchical image saliency detection on extended CSSD. IEEE transactions on pattern analysis and machine intelligence, 38(4), 717-729.
ECSSD Dataset Curators
Shi, J., Yan, Q., Xu, L., & Jia, J.
ECSSD Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
ECSSD Dataset Citation Information
				
					@article{shi2015hierarchical,
  title={Hierarchical image saliency detection on extended CSSD},
  author={Shi, Jianping and Yan, Qiong and Xu, Li and Jia, Jiaya},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  volume={38},
  number={4},
  pages={717--729},
  year={2015},
  publisher={IEEE}
}
				
			
Datasets - Previous not-MNIST Dataset Next - Datasets COCO-Text Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop