Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

PACS Dataset

Estimated reading: 3 minutes

Visualization of the PACS dataset in the Deep Lake UI

PACS dataset

What is PACS Dataset?

PACS is an image dataset for domain generalization. It consists of four domains, namely Photo (1,670 images), Art Painting (2,048 images), Cartoon (2,344 images), and Sketch (3,929 images). Each domain contains seven categories.

Download PACS Dataset in Python

Instead of downloading the PACS dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load PACS Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/pacs-train")
				
			

Load PACS Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/pacs-val")
				
			

Load PACS Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/pacs-test")
				
			

PACS Dataset Structure

PACS Data Fields
  • images: tensor containing the image.
  • labels: tensor to represent labels.
  • domains: tensor to represent the domain.
PACS Data Splits
  • The PACS dataset training set is composed of 8977 images.
  • The PACS dataset testing set is composed of 1014 images.
  • The PACS dataset validation set is composed of 9991 images.

How to use PACS Dataset with PyTorch and TensorFlow in Python

Train a model on PACS dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on PACS dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about PACS Dataset

PACS Dataset Description

  • Homepage: https://domaingeneralization.github.io/#dgintro
  • Paper: Python Annotated Code Search (PACS) Datasets (2021). Version 1.0. [Dataset (Text corpus)]. Source: European Language Grid. https://live.european-language-grid.eu/catalogue/corpus/9172
  • Point of Contact: N/A
PACS Dataset Curators

Xu, Jiaolong and Xiao, Liang and López, Antonio

PACS Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

PACS Dataset Citation Information
				
					@unknown{unknown,
author = {Xu, Jiaolong and Xiao, Liang and López, Antonio},
year = {2019},
month = {07},
pages = {},
title = {Self-supervised Domain Adaptation for Computer Vision Tasks}
}
				
			

PACS Dataset FAQs

What is the PACS dataset for Python?

The PACS dataset is often used for generalization methods because it contains data from multiple source domains so that a trained model can generalize to unseen domains. This dataset is popular for making label classifiers more robust to unknown domain changes.

How to download the PACS dataset in Python?

You can load the PACS dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the PACS dataset training subset and testing subset in Python.

How can I use PACS dataset in PyTorch or TensorFlow?

You can stream the PACS dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the PACS dataset with PyTorch in Python or train a model on the PACS dataset with TensorFlow in Python.

Datasets - Previous AFW Dataset Next - Datasets TIMIT Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop