Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Places205 Dataset

Estimated reading: 3 minutes

Visualization of the Places 205 Dataset in the Deep Lake UI

Places205 Dataset

What is Places205 Dataset?

The Places205 dataset is a large scene-centric dataset with exactly 205 common scene categories. The dataset was created for the task of Scene Recognition. Places205 training dataset contains around 2,500,000 images, with a minimum of 5,000 and a maximum of 15,000 images per scene. The validation set comprises 100 images per category (totaling 20,500 images), and the testing set has 200 images per category (a grand total of 41,000 images).

Downloading Places205 Dataset in Python

Instead of downloading the Places205, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Places205 Dataset

				
					import deeplake
ds = deeplake.load("hub://activeloop/places205")
				
			

Places205 Dataset Structure

Data Fields
  • images: tensor containing the image.
  • labels: an integer from 0 to 244 representing the scene category.

How to use Places205 Dataset with PyTorch and TensorFlow in Python

  1. Places205 with PyTorch in Python.
				
					dataloader = ds.pytorch(num_workers = 2, shuffle = False, batch_size= 4)
				
			
    2. Places205 with TensorFlow in Python.
				
					ds_tensorflow = ds.tensorflow()
				
			

Additional Information about Places205 Dataset.

Places205 Dataset Description

  • Homepage: http://places.csail.mit.edu/
  • Paper: B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning Deep Features for Scene Recognition using Places Database. Advances in Neural Information Processing Systems 27 (NIPS), 2014
  • Point of contact: http://people.csail.mit.edu/bzhou/
Places205 Dataset Curators
Bolei Zhou, Antonio Torralba, Aude Oliva, Aditya Khosla, Agata Lapedriza.
Places205 Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
Places205 Dataset Citation Information
				
					@inproceedings {NIPS2014_3fe94a00,
author = {Zhou, Bolei and Lapedriza, Agata and Xiao, Jianxiong and Torralba, Antonio and Oliva, Aude}, 
booktitle = {Advances in Neural Information Processing Systems},
editor = {Z. Ghahramani and M. Welling and C. Cortes and N. Lawrence and K. Q. Weinberger}, pages = {}, 
publisher = {Curran Associates, Inc.},
title = {Learning Deep Features for Scene Recognition using Places Database},
url = {https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf}, 
volume = {27},
year = {2014} }
				
			

Places205 Dataset FAQs

What is the Places205 dataset for Python?

The Places205 dataset is a large-scale scene-centric dataset with 41,000 images in 205 common scene categories. It has a validation set containing 100 images per category (a total of 20,500 images), and a testing set that contains 200 images per category.

What is the Places205 dataset used for?
The Places205 dataset is often used for scene classification. Since this dataset contains high-coverage and high-diversity images it is a popular dataset to use for visual recognition and scene classification.
 
How to download the Places205 dataset in Python?

You can load the Places205 dataset with one line of code using the open-source package Activeloop Deep Lake. See detailed instructions on how to load the Places205 dataset.

How can I use the Places205 dataset in PyTorch or TensorFlow?

You can stream the Places205 dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake. See detailed instructions on how to use the Places205 Dataset with PyTorch and TensorFlow in Python.

Datasets - Previous GTZAN Music Speech Dataset Next - Datasets FFHQ Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop