Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

NIH Chest X-ray Dataset

Estimated reading: 3 minutes

Visualization of the NIH Chest X-ray Dataset in the Deep Lake UI

NIH Chest X-ray Dataset (ChestX-ray14)

What is NIH Chest X-ray Dataset?

The NIH ChestX-ray (ChestX-ray14) dataset contains 112,120 X-ray images of scans from 30,805 unique individuals with fourteen different thorax disease categories. These disease categories are text-mined from related radiological reports using NLP techniques. The publication will enable scientists to access the dataset and enhance their potential to train algorithms on how to identify and diagnose diseases which lead to physicians making better diagnostic judgments.

Download NIH Chest X-ray Dataset in Python

Instead of downloading the NIH ChestX-ray dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load NIH Chest X-ray Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/nih-chest-xray-train')
				
			

Load NIH Chest X-ray Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/nih-chest-xray-test')
				
			

NIH Chest X-ray Dataset Structure

NIH ChestX-ray Data Fields
  • images: tensor containing images of size 1024×1024.
  • findings: tensor containing labels that represent the disease category for the image.
  • boxes/bbox: tensor containing the bounding box coordinates.
  • boxes/finding: tensor containing the labels for the bounding box coordinates.
  • metadata/patient_id: tensor containing the patient id.
  • metadata/age: tensor containing the patient’s age.
  • metadata/patient_gender: tensor containing patient gender.
  • metadata/follow_up_num: tensor containing patient follow-up number.
  • metadata/view_position: tensor containing the view of the x-ray positions.
  • metadata/orig_img_w: tensor containing the image width.
  • metadata/orig_img_h: tensor containing the image height.
  • metadata/orig_img_pix_spacing_x: tensor containing original image pixel spacing across the x-axis.
  • metadata/orig_img_pix_spacing_y: tensor containing original image pixel spacing across the y-axis.
NIH Chest X-ray Data Splits
  • The NIH Chest X-ray training set is composed of 86,524 images and 15 classes including the ‘No Finding’ class.
  • The NIH Chest X-ray test set is composed of 25596 images and 15 classes including the ‘No Finding’ class.

How to use NIH Chest X-ray Dataset with PyTorch and TensorFlow in Python

Train a model on NIH Chest X-ray dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the NIH Chest X-ray dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about NIH Chest X-ray Dataset

NIH Chest X-ray Dataset Description

  • Homepage: https://www.nih.gov/news-events/news-releases/nih-clinical-center-provides-one-largest-publicly-available-chest-x-ray-datasets-scientific-community
  • Paper: https://nihcc.app.box.com/v/ChestXray-NIHCC/file/220660789610
NIH Chest X-ray Dataset Curators

Ronald Summers

NIH Chest X-ray Dataset Licensing Information
Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
NIH Chest X-ray Dataset Citation Information
				
					@misc{summers2019nih,
  title={NIH Chest X-ray Dataset of 14 Common Thorax Disease Categories},
  author={Summers, RM},
  year={2019}
}
				
			
Datasets - Previous Chest X-Ray Image Dataset Next - Datasets Fashionpedia Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop