Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

HMDB51 Dataset

Estimated reading: 3 minutes

Visualization of the HMDB51 Train Dataset in the Deep Lake UI

HMDB51 dataset

What is HMDB51 Dataset?

The HMDB51 (Human Motion Database 51) dataset is created to enhance the research in computer vision research of recognition and search in the video. A lot of effort has been put into the collection and annotation of large scalable static images with large image categories, but a similar effort has not been done in video division. This dataset has been collected to push the efforts in the collection and annotation of video datasets. This dataset is a collection of various sources such as movies, and public databases (Prelinger archive, YouTube, and Google videos). This dataset contains a minimum of 101 clips for each 51 action categories and in total, the dataset contains 6849 clips.

Download HMDB51 Dataset in Python

Instead of downloading the HMDB51 dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load HMDB51 Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/hmdb51-train")
				
			

Load HMDB51 Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/hmdb51-test")
				
			

Load HMDB51 Dataset Extras Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/hmdb-extras")
				
			

HMDB51 Dataset Structure

HMDB51 Data Fields
  • videos: tensor containing videos
  • labels: tensor containing labels for their respective videos
  • video_quality: tensor containing video quality label
  • number_of_people: tensor containing a number of people in a video
  • camera_viewpoint: tensor containing camera viewpoint label for a video
  • camera_motion: tensor containing camera motion label for a video
  • visible_body_parts: tensor containing visible body parts label for a video

How to use HMDB51 Dataset with PyTorch and TensorFlow in Python

Train a model on the HMDB51 dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the HMDB51 dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about HMDB51 Dataset

HMDB51 Dataset Description

  • Homepage: https://serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
  • Repository: https://github.com/hueihan/Action_Recognition
  • Paper: http://serre-lab.clps.brown.edu/wp-content/uploads/2012/08/Kuehne_etal_iccv11.pdf
HMDB51 Dataset Curators

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre

HMDB51 Dataset Licensing Information

Creative Commons Attribution 4.0 International License

HMDB51 Dataset Citation Information
				
					@InProceedings{Kuehne11,
   author= "Kuehne, H. and Jhuang, H. and Garrote, E. and Poggio, T. and Serre, T.",
   title = "{HMDB}: a large video database for human motion recognition",
   booktitle = "Proceedings of the International Conference on Computer Vision (ICCV)",
   year = "2011",
}
				
			
Datasets - Previous Omniglot Dataset Next - Datasets Chest X-Ray Image Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop