Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Tiny ImageNet Dataset

Estimated reading: 3 minutes

Visualization of the Tiny ImageNet dataset in the Deep Lake UI

Tiny ImageNet dataset

What is Tiny ImageNet Dataset?

In Tiny ImageNet, there are 100,000 images divided up into 200 classes. Every image in the dataset is downsized to a 64×64 colored image. For every class, there are 500 training images, 50 validating images, and 50 test images.

Download Tiny ImageNet Dataset in Python

Instead of downloading the Tiny ImageNet dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Tiny ImageNet Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/tiny-imagenet-train")
				
			

Load Tiny ImageNet Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/tiny-imagenet-test")
				
			

Load Tiny ImageNet Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/tiny-imagenet-validation")
				
			

Tiny ImageNet Dataset Structure

Tiny ImageNet Data Fields
  • image: tensor containing the image.
  • labels: tensor to identify an object in the image
  • boxes: tensor to identify the object using bounding boxes.
Tiny ImageNet Data Splits
  • The TinyImageNet dataset training set is composed of 100,000 images.
  • The TinyImageNet dataset testing set is composed of 10,000 images.
  • The TinyImageNet dataset validation set is composed of 10,000 images.

How to use Tiny ImageNet Dataset with PyTorch and TensorFlow in Python

Train a model on Tiny ImageNet dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Tiny ImageNet dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Tiny ImageNet Dataset

Tiny ImageNet Dataset Description

  • Homepage: https://www.kaggle.com/c/tiny-imagenet
  • Repository: https://github.com/rmccorm4/Tiny-Imagenet-200
  • Paper: Introduced by Le et al. in Tiny imagenet visual recognition challenge
  • Point of Contact: N/A
Tiny ImageNet Dataset Curators

Ya Le and Xuan S. Yang

Tiny ImageNet Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

Tiny ImageNet Dataset Citation Information
				
					@inproceedings{Le2015TinyIV,
  title={Tiny ImageNet Visual Recognition Challenge},
  author={Ya Le and Xuan S. Yang},
  year={2015}
}
				
			

Tiny ImageNet Dataset FAQs

What is the Tiny ImageNet dataset for Python?

The Tiny ImageNet dataset is a visual database often used in visual object recognition software research. The Tiny ImageNet dataset is a modified subset of the original ImageNet dataset. The Tiny ImageNet dataset has 800 fewer classes than the ImageNet dataset, with 100,000 training examples and 10,000 validation examples.

How can I use Tiny ImageNet dataset in PyTorch or TensorFlow?

You can stream the Tiny ImageNet dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on a tiny imagenet dataset with PyTorch in Python or train a model on a tiny imagenet dataset with TensorFlow in Python.

Datasets - Previous HAM10000 Dataset Next - Datasets Speech Commands Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop