Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

LOL Dataset

Estimated reading: 3 minutes

Visualization of the LOL Train Dataset in the Deep Lake UI

LOL dataset

What is LOL Dataset?

The LOL (Low-Light) dataset is a benchmark dataset designed to address the real-world challenge of low-light image enhancement. The LOL dataset is divided into 485 training pairs and 15 testing pairs and contains 500 low-light and normal-light image pairs. The noise in the low-light image was created during the photo-taking procedure. The majority of the photos are of interiors. The photos are all 400×600 pixels in size.

Download LOL Dataset in Python

Instead of downloading the LOL dataset in Python, you can effortlessly load it in Python via our Deep Lake open source with just one line of code.

Load LOL Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/lowlight-train')
				
			

Load LOL Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/lowlight-val')
				
			

LOL Dataset Structure

LOL Data Fields
  • highlight_images: tensor containing images taken at normal light.
  • lowlight_images: tensor containing images taken at low light.
LOL Data Splits
  • The LOL dataset training set is composed of 485 samples.
  • The LOL dataset validation set is composed of 15 samples.

How to use LOL with PyTorch and TensorFlow in Python

Train a model on LOL dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the LOL dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about LOL Dataset

LOL Dataset Description

  • Homepage: https://daooshee.github.io/BMVC2018website/
  • Repository: https://github.com/weichen582/RetinexNet
  • Paper: https://arxiv.org/pdf/2005.02818.pdf
LOL Dataset Curators

Wei Xiong, Ding Liu, Xiaohui Shen, Chen Fang, and Jiebo Luo

LOL Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license. If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

LOL Dataset Citation Information
				
					@article{wei2018deep,
title={Deep retinex decomposition for low-light enhancement},
author={Wei, Chen and Wang, Wenjing and Yang, Wenhan and Liu, Jiaying},
journal={arXiv preprint arXiv:1808.04560},
year={2018}
}
				
			

LOL Dataset FAQs

What is the LOL dataset for Python?

The LOL dataset consists of 500 pairs of low and normal light images, divided into 485 training pairs and 15 test pairs. Low-light images contain noise that occurs during shooting. Most of the images are indoor scenes. All images are 400×600 resolution.

How to download the LOL dataset in Python?

You can load the LOL dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the LOL dataset training subset and testing subset in Python.

How can I use LOL dataset in PyTorch or TensorFlow?

You can stream the LOL dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the LOL dataset with PyTorch in Python or train a model on the LOL dataset with TensorFlow in Python.

Datasets - Previous VCTK Dataset Next - Datasets AQUA Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop