Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

CSSD Dataset

Estimated reading: 3 minutes

Visualization of the CSSD dataset in the Deep Lake UI

CSSD dataset

What is CSSD Dataset?

The CSSD (Complex Scene Saliency) Dataset is created to enhance research in the segmentation of complex scene saliency images. It was generated to substitute the MSRA-1000 dataset which normally has images having smooth and simple background structures. The dataset brings natural images which are diverse in nature. All the images were acquired from the internet and with help of five helpers in producing ground truth masks. This dataset contains 200 natural images with well-annotated masks.

Download CSSD Dataset in Python

Instead of downloading the CSSD dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load CSSD Dataset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/cssd")
				
			

CSSD Dataset Structure

CSSD Data Fields
  • images: tensor containing images
  • masks: tensor containing masks of respective images

How to use CSSD Dataset with PyTorch and TensorFlow in Python

Train a model on CSSD dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on CSSD dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about CSSD Dataset

CSSD Dataset Description

  • Homepage: https://www.cse.cuhk.edu.hk/leojia/projects/hsaliency/dataset.html
  • Paper: Yan, Q., Xu, L., Shi, J., & Jia, J. (2013). Hierarchical saliency detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1155-1162).
CSSD Dataset Curators

Yan, Q., Xu, L., Shi, J., & Jia, J.

CSSD Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

CSSD Dataset Citation Information
				
					@inproceedings{yan2013hierarchical,
  title={Hierarchical saliency detection},
  author={Yan, Qiong and Xu, Li and Shi, Jianping and Jia, Jiaya},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1155--1162},
  year={2013}
}
				
			

CSSD Dataset FAQs

What is the CSSD dataset for Python?

CSSD dataset was produced to substitute the MSRA-1000 dataset which typically has pictures having smooth and straightforward foundation structures. The dataset brings normal pictures which are assorted in nature. Every one of the pictures was procured from the web and with the assistance of five assistants in creating ground truth covers. This dataset contains 200 normal pictures with very much clarified veils.

How to download the CSSD dataset in Python?

You can load the CSSD dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the CSSD dataset training subset in Python.

How can I use the CSSD dataset in PyTorch or TensorFlow?

You can stream the CSSD dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the CSSD dataset with PyTorch in Python or train a model on the CSSD dataset with TensorFlow in Python.

Datasets - Previous GTSRB Dataset Next - Datasets ATIS Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop