Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

AFW Dataset

Estimated reading: 3 minutes

Visualization of the AFW dataset in the Deep Lake UI

AFW Dataset

What is AFW Dataset?

The AFW (Annotated Faces in the Wild) dataset, is made up of 205 images with 468 faces in total. Every face in the dataset is labeled with at most six landmarks with visibility labels, as well as a bounding box. AFW is often used for landmark estimation in real-world, cluttered images, face detection, and pose estimation.

Download AFW Dataset in Python

Instead of downloading the AFW dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load AFW Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load("hub://activeloop/AFW")
				
			

AFW Dataset Structure

AFW Data Fields
  • image: tensor containing the image.
  • keypoints: tensor to identify various key points from the face
AFW Data Splits
  • The AFW dataset training set is composed of 337.

How to use AFW Dataset with PyTorch and TensorFlow in Python

Train a model on AFW dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on AFW dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about AFW Dataset

AFW Dataset Description

  • Homepage: https://ibug.doc.ic.ac.uk/resources
  • Paper: Introduced by Xiangxin Zhu et al. in Face detection, pose estimation, and landmark localization in the wild
  • Point of Contact: N/A
AFW Dataset Curators

Xiangxin Zhu; Deva Ramanan

AFW Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

AFW Dataset Citation Information
				
					@inproceedings{,
  title = {Face detection, pose estimation, and landmark localization in the wild},
  author = {Xiangxin Zhu; Deva Ramanan},
  booktitle = {2012 IEEE Conference on Computer Vision and Pattern Recognition},
  year = {2012} 
}
				
			

AFW Dataset FAQs

What is the AFW dataset for Python?

The Annotated Faces in the Wild (AFW) dataset comprises 205 pictures with 468 faces in total. AFW is a popular standardized benchmark for automatic facial landmark localization and detection. The dataset helps with developing models that detect a set of predefined facial fiducial points.

What is the AFW dataset used for?

The AFW dataset is commonly used for training and testing models for face detection, pose estimation, and landmark estimation in real-world, cluttered images. It is a popular benchmark for automatic facial landmark localization and detection.

How can I use AFW dataset in PyTorch or TensorFlow?

You can stream the AFW dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the AFW dataset with PyTorch in Python or train a model on the AFW dataset with TensorFlow in Python.

Datasets - Previous Caltech 256 Dataset Next - Datasets PACS Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop