Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

NABirds Dataset

Estimated reading: 3 minutes

Visualization of the NABirds dataset in the Deep Lake UI

NABirds Dataset

What is NABirds Dataset?

The NABirds dataset is a collection of 48,000 annotated photographs of the 400 species of birds that are commonly seen across North America. In the dataset, there are more than 100 photographs for each species, including separate annotations for males, females, and juveniles that comprise 700 visual categories

Download NABirds Dataset in Python

Instead of downloading the NABirds dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load NABirds Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/nabirds-dataset-train')
				
			

Load NABirds Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/nabirds-dataset-val')
				
			

NABirds Dataset Structure

NABirds Data Fields
  • images: tensor containing the face image.
  • labels: tensor containing labels of bird categories.
  • boxes: tensor to localize the bird in the image.
NABirds Data Splits
  • The NABirds dataset training set is composed of 23938.
  • The NABirds dataset validation set is composed of 24633.

How to use NABirds Dataset with PyTorch and TensorFlow in Python

Train a model on the NABirds dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on the NABirds dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about NABirds Dataset

NABirds Dataset Description

  • Homepage: https://dl.allaboutbirds.org/nabirds
  • Repository: N/A
  • Paper: Introduced by Grant Van Horn et al. in Building a Bird Recognition App and Large Scale Dataset With Citizen Scientists: The Fine Print in Fine-Grained Dataset Collection
  • Point of Contact: [email protected]
NABirds Dataset Curators

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Serge Belongie

NABirds Dataset Licensing Information

Deep Lake users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.

If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!

NABirds Dataset Citation Information
				
					@inproceedings{,
  title = {Building a Bird Recognition App and Large Scale Dataset With Citizen Scientists: The Fine Print in Fine-Grained Dataset Collection},
  author = {Horn},
}
				
			

NABirds Dataset FAQs

What is the NABirds dataset for Python?

NABirds is a collection of 48,000 annotated photographs of 400 species of birds commonly observed in North America. This dataset is often used for fine-grained visual categorization experiments.

How to download the NABirds dataset in Python?

You can load the NABirds dataset fast with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to load the NABirds dataset training subset or NABirds validation subset in Python.

How can I use the NABirds dataset in PyTorch or TensorFlow?

You can stream the NABirds dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python. See detailed instructions on how to train a model on the NABirds dataset with PyTorch in Python or train a model on the NABirds dataset with TensorFlow in Python.

Datasets - Previous ARID Video Action dataset Next - Datasets SQuAD Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop