Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Chest X-Ray Image Dataset

Estimated reading: 3 minutes

Visualization of the Chest X-ray Image Dataset in the Deep Lake UI

Chest X-Ray Image Dataset

What is Chest X-Ray Image Dataset?

The Chest X-Ray Image dataset consists of a total of approximately 5856 images. All chest X-ray imaging was chosen from retrospective cohorts of children aged one to five years and was done as part of the patients’ usual clinical treatment. Before being approved to train the AI system, all chest x – rays were first examined for quality control, and diagnoses for the radiographs were assessed by two expert physicians.

Download Chest X-Ray Image Dataset in Python

Instead of downloading the Chest X-Ray Image dataset in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Chest X-Ray Image Dataset Training Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/chest-xray-train')
				
			

Load Chest X-Ray Image Dataset Testing Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/chest-xray-test')
				
			

Load Chest X-Ray Image Dataset Validation Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/chest-xray-val')
				
			

Chest X-Ray Image Dataset Structure

Chest X-Ray Image Data Fields
  • images: tensor containing images of the dataset
  • labels: tensor containing labels that represent the 3 categories, normal, bacterial, and viral.
  • person_num: tensor containing the patient number. Note that this data field is available only for images belonging to bacterial and viral categories and is not available for normal categories.
Chest X-Ray Image Data Splits
  • The Chest X-Ray Image training set is composed of 5216 images.
  • The Chest X-Ray Image testing set is composed of 624 images.
  • The Chest X-Ray Image validation set is composed of 16 images.

How to use Chest X-Ray Image Dataset with PyTorch and TensorFlow in Python

Train a model on the Chest X-Ray Image dataset with PyTorch in Python

Let’s use Deep Lake built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Chest X-Ray Image dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about Chest X-Ray Image Dataset

Chest X-Ray Image Dataset Description

Homepage: https://www.cell.com/cell/fulltext/S0092-8674(18)30154-5

Chest X-Ray Image Dataset Curators

Daniel S. Kermany, Michael Goldbaum, Wenjia Cai, Carolina C.S. Valentim, Huiying Liang, Sally L. Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, Justin Dong, Made K. Prasadha, Jacqueline Pei, Magdalene Y.L. Ting, Jie Zhu, Christina Li, Sierra Hewett, Jason Dong, Ian Ziyar, Alexander Shi, Runze Zhang, Lianghong Zheng, Rui Hou, William Shi, Xin Fu Yaou Duan, Viet A.N. Huu, Cindy Wen, Edward D. Zhang, Charlotte L. Zhang, Oulan Li, Xiaobo Wang, Michael A. Singer, Xiaodong Sun, Jie Xu, Ali Tafreshi, M. Anthony Lewis, Huimin Xia Kang Zhang

Chest X-Ray Image Dataset Licensing Information

CC BY 4.0

Chest X-Ray Image Dataset Citation Information
				
					@article{kermany2018identifying,
title={Identifying medical diagnoses and treatable diseases by image-based deep learning},
author={Kermany, Daniel S and Goldbaum, Michael and Cai, Wenjia and Valentim, Carolina CS and Liang, Huiying and Baxter, Sally L and McKeown, Alex and Yang, Ge and Wu, Xiaokang and Yan, Fangbing and others},
journal={Cell},
volume={172},
number={5},
pages={1122--1131},
year={2018},
publisher={Elsevier}
}
				
			
Datasets - Previous HMDB51 Dataset Next - Datasets NIH Chest X-ray Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop