Machine Learning Datasets Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation
Get Started
Machine Learning Datasets Machine Learning Datasets
Get Started
Machine Learning Datasets
  • GitHub
  • Slack
  • Documentation

Docy

Machine Learning Datasets

  • Folder icon closed Folder open iconDatasets
    • MNIST
    • ImageNet Dataset
    • COCO Dataset
    • CIFAR 10 Dataset
    • CIFAR 100 Dataset
    • FFHQ Dataset
    • Places205 Dataset
    • GTZAN Genre Dataset
    • GTZAN Music Speech Dataset
    • The Street View House Numbers (SVHN) Dataset
    • Caltech 101 Dataset
    • LibriSpeech Dataset
    • dSprites Dataset
    • PUCPR Dataset
    • RAVDESS Dataset
    • GTSRB Dataset
    • CSSD Dataset
    • ATIS Dataset
    • Free Spoken Digit Dataset (FSDD)
    • not-MNIST Dataset
    • ECSSD Dataset
    • COCO-Text Dataset
    • CoQA Dataset
    • FGNET Dataset
    • ESC-50 Dataset
    • GlaS Dataset
    • UTZappos50k Dataset
    • Pascal VOC 2012 Dataset
    • Pascal VOC 2007 Dataset
    • Omniglot Dataset
    • HMDB51 Dataset
    • Chest X-Ray Image Dataset
    • NIH Chest X-ray Dataset
    • Fashionpedia Dataset
    • DRIVE Dataset
    • Kaggle Cats & Dogs Dataset
    • Lincolnbeet Dataset
    • Sentiment-140 Dataset
    • MURA Dataset
    • LIAR Dataset
    • Stanford Cars Dataset
    • SWAG Dataset
    • HASYv2 Dataset
    • WFLW Dataset
    • Visdrone Dataset
    • 11k Hands Dataset
    • QuAC Dataset
    • LFW Deep Funneled Dataset
    • LFW Funneled Dataset
    • Office-Home Dataset
    • LFW Dataset
    • PlantVillage Dataset
    • Optical Handwritten Digits Dataset
    • UCI Seeds Dataset
    • STN-PLAD Dataset
    • FER2013 Dataset
    • Adience Dataset
    • PPM-100 Dataset
    • CelebA Dataset
    • Fashion MNIST Dataset
    • Google Objectron Dataset
    • CARPK Dataset
    • CACD Dataset
    • Flickr30k Dataset
    • Kuzushiji-Kanji (KKanji) dataset
    • KMNIST
    • EMNIST Dataset
    • USPS Dataset
    • MARS Dataset
    • HICO Classification Dataset
    • NSynth Dataset
    • RESIDE dataset
    • Electricity Dataset
    • DRD Dataset
    • Caltech 256 Dataset
    • AFW Dataset
    • PACS Dataset
    • TIMIT Dataset
    • KTH Actions Dataset
    • WIDER Face Dataset
    • WISDOM Dataset
    • DAISEE Dataset
    • WIDER Dataset
    • LSP Dataset
    • UCF Sports Action Dataset
    • Wiki Art Dataset
    • FIGRIM Dataset
    • ANIMAL (ANIMAL10N) Dataset
    • OPA Dataset
    • DomainNet Dataset
    • HAM10000 Dataset
    • Tiny ImageNet Dataset
    • Speech Commands Dataset
    • 300w Dataset
    • Food 101 Dataset
    • VCTK Dataset
    • LOL Dataset
    • AQUA Dataset
    • LFPW Dataset
    • ARID Video Action dataset
    • NABirds Dataset
    • SQuAD Dataset
    • ICDAR 2013 Dataset
    • Animal Pose Dataset
  • Folder icon closed Folder open iconDeep Lake Docs Home
  • Folder icon closed Folder open iconDataset Visualization
  • API Basics
  • Storage & Credentials
  • Getting Started
  • Tutorials (w Colab)
  • Playbooks
  • Data Layout
  • Folder icon closed Folder open iconShuffling in ds.pytorch()
  • Folder icon closed Folder open iconStorage Synchronization
  • Folder icon closed Folder open iconTensor Relationships
  • Folder icon closed Folder open iconQuickstart
  • Folder icon closed Folder open iconHow to Contribute

Caltech 101 Dataset

Estimated reading: 3 minutes

Visualization of Caltech 101 Dataset in the Deep Lake UI

Caltech 101 Dataset

What is Caltech 101 Dataset?

The Caltech 101 dataset contains 101 categories of objects for recognition algorithms. Each category has about 40 to 800 images. The dataset contains 50 categories on average per category. The images in this dataset are roughly 300 x 200 pixels.

Downloading Caltech 101 Dataset in Python

Instead of downloading the Caltech 101 in Python, you can effortlessly load it in Python via our Deep Lake open-source with just one line of code.

Load Caltech 101 Dataset Subset in Python

				
					import deeplake
ds = deeplake.load('hub://activeloop/caltech101')
				
			

Caltech 101 Dataset Structure

Data Fields
  • images: tensor containing the image.
  • labels: tensor containing labels of a corresponding image.

How to use Caltech 101 Dataset with PyTorch and TensorFlow in Python

Train a model on Caltech 101 dataset with PyTorch in Python

Let’s use Hub’s built-in PyTorch one-line dataloader to connect the data to the compute:

				
					dataloader = ds.pytorch(num_workers=0, batch_size=4, shuffle=False)
				
			
Train a model on Caltech 101 dataset with TensorFlow in Python
				
					dataloader = ds.tensorflow()
				
			

Additional Information about STN-PLAD Dataset

Caltech 101 Dataset Description

  • Homepage: http://www.vision.caltech.edu/datasets/
Caltech 101 Dataset Licensing Information
Hub users may have access to a variety of publicly available datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have a license to use the datasets. It is your responsibility to determine whether you have permission to use the datasets under their license.
 
If you’re a dataset owner and do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thank you for your contribution to the ML community!
Caltech 101 Dataset Citation Information
				
					@inproceedings{fei2004learning,
  title={Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories},
  author={Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
  booktitle={2004 conference on computer vision and pattern recognition workshop},
  pages={178--178},
  year={2004},
  organization={IEEE}
}
				
			

Caltech 101 Dataset FAQs

What is the Caltech 101 dataset for Python?

The Caltech-101 dataset comprises images of objects belonging to 101 classes, plus one background clutter class. Each image has labeled with a single object. Each class contains roughly 40 to 800 images, totaling around 9k images. Images are of variable sizes, with typical edge lengths of 200-300 pixels.

What is the Caltech 101 dataset used for?
The Caltech 101 dataset is commonly used to train and test computer vision recognition and classification algorithms. Using the Caltech 101 dataset comes with several advantages over other similar datasets as almost all the images within each category are uniform in image size. Caltech 101 also contains detailed image annotations.
How to download the Caltech 101 dataset in Python?

You can load the Caltech 101 dataset quickly with one line of code using Activeloop Deep Lake the open-source package made in Python. Check out detailed instructions on how to load the Caltech 101 dataset subset in Python.

How can I use Caltech 101 dataset in PyTorch or TensorFlow?

You can train a model on the Caltech 101 dataset with PyTorch in Python or train a model on Caltech 101 dataset with TensorFlow in Python. You can stream the Caltech 101 dataset while training a model in PyTorch or TensorFlow with one line of code using the open-source package Activeloop Deep Lake in Python.

Datasets - Previous STN-PLAD Dataset Next - Datasets FER2013 Dataset
Leaf Illustration

© 2022 All Rights Reserved by Snark AI, inc dba Activeloop